已知:\(x^2+\frac{1}{x^2} =\sqrt{2}\),求解:\(x^{2022}+\frac{1}{x^{2022}}\)的值。

已知:\(x^2+\frac{1}{x^2} = \sqrt{2}\)

\(x^4+\frac{1}{x^4}+2=2\)

\(x^4+\frac{1}{x^4}=0\)

\(x^8+1=0\)

解:\(x^{2022}+\frac{1}{x^{2022}}\)

=\(x^{2024-2}+\frac{1}{x^{2024-2}}\)

=\(\frac{x^{2024}}{x^2}+\frac{1}{\frac{x^{2024}}{x^2}}\)

=\(\frac{{x^8}^{253}}{x^2}+\frac{x^2}{{x^8}^{253}}\)

=\(\frac{{-1}^{253}}{x^2}+\frac{x^2}{{-1}^{253}}\)

=\(\frac{-1}{x^2}+\frac{x^2}{-1}\)

=\(-1(x^2+\frac{1}{x^2})\)

=\(-\sqrt{2}\)

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注