已知\(x > 0\),求\(\frac{4}{x}-\frac{9}{x+1}\)最小值=
注意核心公式1:\(a+b \geq 2 \cdot \sqrt{ab}\)
注意核心公式2:\(\frac{b}{a}+\frac{a}{b} \geq 2 \cdot \sqrt{\frac{b}{a} \cdot \frac{a}{b}}\)
注意核心公式3:\(k\frac{b}{a}+j\frac{a}{b} \geq 2 \cdot \sqrt{k\frac{b}{a} \cdot j\frac{a}{b}}\)
第一步:配凑
\(\frac{4}{x}-\frac{9}{x+1}\)
=\(\frac{4+4x-4x}{x}-\frac{9+9x-9x}{x+1}\)
=\(4\frac{x+1}{x}-4 – 9 + 9\frac{x}{x+1}\)
=\(4\frac{x+1}{x}-13 + 9\frac{x}{x+1}\)
由核心公式1,2,3可得:
\(4\frac{x+1}{x}-13 + 9\frac{x}{x+1} \geq 2\sqrt{4\frac{x+1}{x} \cdot 9\frac{x}{x+1}} -13 \)
\(\geq 2\sqrt{4 \cdot 9} -13 \)
\(\geq 2\sqrt{36} -13 \)
\(\geq 12 -13 \)
\(\geq -1 \)
解得:\(\frac{4}{x}-\frac{9}{x+1}\)最小值=\(-1\)