已知\(m=\sqrt[3]{4}+\sqrt[3]{2}+1\),求\(\frac{1}{m^3}+\frac{3}{m^2}+\frac{3}{m}\)的值。

\[ \begin{align*} 已知:m=\sqrt[3]{4}+\sqrt[3]{2}+1 \\ & m=(\sqrt[3]{2})^2+\sqrt[3]{2}+1 \\ & 设 t = \sqrt[3]{2} \\ & m =t^2 + t +1 \\ & 两边同乘以 t-1 \\ & (t-1)\cdot m = (t-1)\cdot(t^2+t+1) \\ & (t-1)\cdot m = t^3 -1 \\ & (t-1)\cdot m = (\sqrt[3]{2})^3 -1=2-1=1 \\ & m = \frac{1}{\sqrt[3]{2}-1} \\ 得:\frac{1}{m} = \sqrt[3]{2}-1 \\ \\ \frac{1}{m^3}+\frac{3}{m^2}+\frac{3}{m} \\ & = (\frac{1}{m})^3 +3(\frac{1}{m})^2+3(\frac{1}{m}) \\ & = (\frac{1}{m})^3 +3(\frac{1}{m})^2+3(\frac{1}{m})+1-1 \\ & = (\frac{1}{m}+1)^3 -1 \\ & = (\sqrt[3]{2}-1+1)^3 -1 \\ & = (\sqrt[3]{2})^3-1 \\ & = 2-1=1 \\ \end{align*} \]

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注