求:\(1+\frac{1}{1+\frac{1}{1+\frac{1}{…}}}\)
\[
\begin{align*}
& 求:1+\frac{1}{1+\frac{1}{1+\frac{1}{…}}} \\
& 设: t = 1+\frac{1}{…} (t \geq 0 ) \\
& t = 1+\frac{1}{t} \\
& t^2 = t+1 \\
& t^2 -t = 1 \\
& (t-\frac{1}{2})^2 = 1+\frac{1}{4} \\
& t-\frac{1}{2} = \pm \frac{\sqrt{5}}{2} \\
& t = \frac{1 \pm \sqrt{5}}{2} \\
& 因为:(t \geq 0) , t=\frac{1-\sqrt{5}}{2} 舍去 。 \\
& 即解:1+\frac{1}{1+\frac{1}{1+\frac{1}{…}}} =\frac{1+\sqrt{5}}{2} \\
\end{align*}
\]