求解:\(\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}\)
\[
\begin{align*}
& 解:\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}} \\
& 设: t = \sqrt{2-\sqrt{…}} ( t \geq 0 ) \\
& 则: t = \sqrt{2-t} \\
& t^2 = 2-t \\
& t^2+t-2 = 0 \\
& 因式分解(十字交叉) \\
& (t+2)(t-1) = 0 \\
& 解得:t=1,t=-2 (t \geq 0,舍去) \\
即:
& \sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}} = 1
\end{align*}
\]