\(已知:x,y \geq 0,且x+3y=x^3y^2,求:\frac{3}{x}+\frac{2}{y}的最小值。\)

\(已知:x,y \geq 0,且x+3y=x^3y^2,\)

\(求:\frac{3}{x}+\frac{2}{y}的最小值。\)

\[ \begin{align*} (\frac{3}{x}+\frac{2}{y})^2 \\ & = \frac{9}{x^2}+\frac{12}{xy} +\frac{4}{y^2} \\ & = \frac{9}{x^2} + \frac{12y+4x}{xy^2} \\ & = \frac{9}{x^2} + \frac{4(x+3y)}{xy^2} \\ & = \frac{9}{x^2} + \frac{4x^3y^2}{xy^2} \\ & = \frac{9}{x^2} + 4x^2 \\ 由公式:a^2+b^2 \geq 2ab: & \geq 2 \cdot (\frac{3}{x} \cdot 2x) \\ & \geq 2 \cdot (6) \\ & \geq 12 \\ 即解得 \frac{3}{x} + \frac{2}{y} 最小值为:\sqrt{12} = 2\sqrt{3}. \end{align*} \] \[ \begin{align*} & x+3y = x^3y^2 \\ & x(\frac{1}{y})^2 + 3(\frac{1}{y}) -x^3 = 0 \\ & (\frac{1}{y}) =\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ & = \frac{-3 \pm \sqrt{3^2-4x \cdot (-x^3)}}{2x} \\ & = \frac{-3 \pm \sqrt{9+4x^4}}{2x} \\ \frac{3}{x}+\frac{2}{y} \\ & = \frac{3}{x} + 2(\frac{-3 \pm \sqrt{9+4x^4}}{2x}) \\ & = \frac{\pm \sqrt{9+4x^4}}{x} \\ 已知x,y \geq 0 , 负数舍去。 \\ & = \frac{\sqrt{9+4x^4}}{x} \\ & = \sqrt{\frac{9}{x^2}+\frac{4x^4}{x^2}} \\ & = \sqrt{\frac{9}{x^2}+\frac{4x^2}{1}} \\ 由公式:a^2+b^2 \geq 2ab : \\ & \geq \sqrt{2(\frac{3}{x} \cdot \frac{2x}{1})} \\ & \geq 2\sqrt{3} 即原式\frac{3}{x}+\frac{2}{y}的最小值为:2\sqrt{3}. \end{align*} \]

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注