\(填空:a^{16}-a+1是(正数,0,负数)\)
\[
\begin{align*}
原式:a^{16}-a+1 \\
& = a^{16}-a^8+\frac{1}{4}+a^8+\frac{3}{4} \\
& = (a^8-\frac{1}{2})^2 + a^8 -a^4+\frac{1}{4} +a^4-a+\frac{2}{4} \\
& = (a^8-\frac{1}{2})^2 + (a^4-\frac{1}{2})^2 +a^4-a+\frac{2}{4} \\
& = (a^8-\frac{1}{2})^2 + (a^4-\frac{1}{2})^2 +a^4 -a^2 +\frac{1}{4} +a^2 -a +\frac{1}{4} \\
& = (a^8-\frac{1}{2})^2 + (a^4-\frac{1}{2})^2 +(a^2-\frac{1}{2})^2 +(a-\frac{1}{2})^2 \\
由于:(a+b)^2 \geq 0: \\
(a^8-\frac{1}{2})^2 + (a^4-\frac{1}{2})^2 +(a^2-\frac{1}{2})^2 +(a-\frac{1}{2})^2 \geq 0 \\
当:a^8 = \frac{1}{2},a^4=\frac{1}{2},a^2=0,a=\frac{1}{2}时, \\
(a^8-\frac{1}{2})^2 + (a^4-\frac{1}{2})^2 +(a^2-\frac{1}{2})^2 +(a-\frac{1}{2})^2 均不能同时为0, \\
所以:a^{16}-a+1是:正数。
\end{align*}
\]